3.7.96 \(\int \frac {x^{-1+3 n}}{\sqrt {a+b x^n} \sqrt {c+d x^n}} \, dx\)

Optimal. Leaf size=150 \[ -\frac {\left (4 a b c d-3 (a d+b c)^2\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^n}}{\sqrt {b} \sqrt {c+d x^n}}\right )}{4 b^{5/2} d^{5/2} n}-\frac {3 (a d+b c) \sqrt {a+b x^n} \sqrt {c+d x^n}}{4 b^2 d^2 n}+\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n} \]

________________________________________________________________________________________

Rubi [A]  time = 0.15, antiderivative size = 150, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {446, 90, 80, 63, 217, 206} \begin {gather*} -\frac {3 (a d+b c) \sqrt {a+b x^n} \sqrt {c+d x^n}}{4 b^2 d^2 n}-\frac {\left (4 a b c d-3 (a d+b c)^2\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^n}}{\sqrt {b} \sqrt {c+d x^n}}\right )}{4 b^{5/2} d^{5/2} n}+\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^(-1 + 3*n)/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),x]

[Out]

(-3*(b*c + a*d)*Sqrt[a + b*x^n]*Sqrt[c + d*x^n])/(4*b^2*d^2*n) + (x^n*Sqrt[a + b*x^n]*Sqrt[c + d*x^n])/(2*b*d*
n) - ((4*a*b*c*d - 3*(b*c + a*d)^2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^n])/(Sqrt[b]*Sqrt[c + d*x^n])])/(4*b^(5/2)*d
^(5/2)*n)

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 90

Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a + b*
x)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 3)), x] + Dist[1/(d*f*(n + p + 3)), Int[(c + d*x)^n*(e +
 f*x)^p*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(
n + 2) + c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {x^{-1+3 n}}{\sqrt {a+b x^n} \sqrt {c+d x^n}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^2}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,x^n\right )}{n}\\ &=\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n}+\frac {\operatorname {Subst}\left (\int \frac {-a c-\frac {3}{2} (b c+a d) x}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,x^n\right )}{2 b d n}\\ &=-\frac {3 (b c+a d) \sqrt {a+b x^n} \sqrt {c+d x^n}}{4 b^2 d^2 n}+\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n}-\frac {\left (4 a b c d-3 (b c+a d)^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,x^n\right )}{8 b^2 d^2 n}\\ &=-\frac {3 (b c+a d) \sqrt {a+b x^n} \sqrt {c+d x^n}}{4 b^2 d^2 n}+\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n}-\frac {\left (4 a b c d-3 (b c+a d)^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x^n}\right )}{4 b^3 d^2 n}\\ &=-\frac {3 (b c+a d) \sqrt {a+b x^n} \sqrt {c+d x^n}}{4 b^2 d^2 n}+\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n}-\frac {\left (4 a b c d-3 (b c+a d)^2\right ) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x^n}}{\sqrt {c+d x^n}}\right )}{4 b^3 d^2 n}\\ &=-\frac {3 (b c+a d) \sqrt {a+b x^n} \sqrt {c+d x^n}}{4 b^2 d^2 n}+\frac {x^n \sqrt {a+b x^n} \sqrt {c+d x^n}}{2 b d n}-\frac {\left (4 a b c d-3 (b c+a d)^2\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^n}}{\sqrt {b} \sqrt {c+d x^n}}\right )}{4 b^{5/2} d^{5/2} n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.46, size = 157, normalized size = 1.05 \begin {gather*} \frac {\sqrt {b c-a d} \left (3 a^2 d^2+2 a b c d+3 b^2 c^2\right ) \sqrt {\frac {b \left (c+d x^n\right )}{b c-a d}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x^n}}{\sqrt {b c-a d}}\right )+b \sqrt {d} \sqrt {a+b x^n} \left (c+d x^n\right ) \left (-3 a d-3 b c+2 b d x^n\right )}{4 b^3 d^{5/2} n \sqrt {c+d x^n}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^(-1 + 3*n)/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),x]

[Out]

(b*Sqrt[d]*Sqrt[a + b*x^n]*(c + d*x^n)*(-3*b*c - 3*a*d + 2*b*d*x^n) + Sqrt[b*c - a*d]*(3*b^2*c^2 + 2*a*b*c*d +
 3*a^2*d^2)*Sqrt[(b*(c + d*x^n))/(b*c - a*d)]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x^n])/Sqrt[b*c - a*d]])/(4*b^3*d^(5/
2)*n*Sqrt[c + d*x^n])

________________________________________________________________________________________

IntegrateAlgebraic [F]  time = 0.14, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{-1+3 n}}{\sqrt {a+b x^n} \sqrt {c+d x^n}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

IntegrateAlgebraic[x^(-1 + 3*n)/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),x]

[Out]

Defer[IntegrateAlgebraic][x^(-1 + 3*n)/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]), x]

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 361, normalized size = 2.41 \begin {gather*} \left [\frac {{\left (3 \, b^{2} c^{2} + 2 \, a b c d + 3 \, a^{2} d^{2}\right )} \sqrt {b d} \log \left (8 \, b^{2} d^{2} x^{2 \, n} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 4 \, {\left (2 \, \sqrt {b d} b d x^{n} + {\left (b c + a d\right )} \sqrt {b d}\right )} \sqrt {b x^{n} + a} \sqrt {d x^{n} + c} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x^{n}\right ) + 4 \, {\left (2 \, b^{2} d^{2} x^{n} - 3 \, b^{2} c d - 3 \, a b d^{2}\right )} \sqrt {b x^{n} + a} \sqrt {d x^{n} + c}}{16 \, b^{3} d^{3} n}, -\frac {{\left (3 \, b^{2} c^{2} + 2 \, a b c d + 3 \, a^{2} d^{2}\right )} \sqrt {-b d} \arctan \left (\frac {{\left (2 \, \sqrt {-b d} b d x^{n} + {\left (b c + a d\right )} \sqrt {-b d}\right )} \sqrt {b x^{n} + a} \sqrt {d x^{n} + c}}{2 \, {\left (b^{2} d^{2} x^{2 \, n} + a b c d + {\left (b^{2} c d + a b d^{2}\right )} x^{n}\right )}}\right ) - 2 \, {\left (2 \, b^{2} d^{2} x^{n} - 3 \, b^{2} c d - 3 \, a b d^{2}\right )} \sqrt {b x^{n} + a} \sqrt {d x^{n} + c}}{8 \, b^{3} d^{3} n}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+3*n)/(a+b*x^n)^(1/2)/(c+d*x^n)^(1/2),x, algorithm="fricas")

[Out]

[1/16*((3*b^2*c^2 + 2*a*b*c*d + 3*a^2*d^2)*sqrt(b*d)*log(8*b^2*d^2*x^(2*n) + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4
*(2*sqrt(b*d)*b*d*x^n + (b*c + a*d)*sqrt(b*d))*sqrt(b*x^n + a)*sqrt(d*x^n + c) + 8*(b^2*c*d + a*b*d^2)*x^n) +
4*(2*b^2*d^2*x^n - 3*b^2*c*d - 3*a*b*d^2)*sqrt(b*x^n + a)*sqrt(d*x^n + c))/(b^3*d^3*n), -1/8*((3*b^2*c^2 + 2*a
*b*c*d + 3*a^2*d^2)*sqrt(-b*d)*arctan(1/2*(2*sqrt(-b*d)*b*d*x^n + (b*c + a*d)*sqrt(-b*d))*sqrt(b*x^n + a)*sqrt
(d*x^n + c)/(b^2*d^2*x^(2*n) + a*b*c*d + (b^2*c*d + a*b*d^2)*x^n)) - 2*(2*b^2*d^2*x^n - 3*b^2*c*d - 3*a*b*d^2)
*sqrt(b*x^n + a)*sqrt(d*x^n + c))/(b^3*d^3*n)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {sage}_{0} x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+3*n)/(a+b*x^n)^(1/2)/(c+d*x^n)^(1/2),x, algorithm="giac")

[Out]

sage0*x

________________________________________________________________________________________

maple [F]  time = 1.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3 n -1}}{\sqrt {b \,x^{n}+a}\, \sqrt {d \,x^{n}+c}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3*n-1)/(b*x^n+a)^(1/2)/(d*x^n+c)^(1/2),x)

[Out]

int(x^(3*n-1)/(b*x^n+a)^(1/2)/(d*x^n+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3 \, n - 1}}{\sqrt {b x^{n} + a} \sqrt {d x^{n} + c}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(-1+3*n)/(a+b*x^n)^(1/2)/(c+d*x^n)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^(3*n - 1)/(sqrt(b*x^n + a)*sqrt(d*x^n + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {x^{3\,n-1}}{\sqrt {a+b\,x^n}\,\sqrt {c+d\,x^n}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3*n - 1)/((a + b*x^n)^(1/2)*(c + d*x^n)^(1/2)),x)

[Out]

int(x^(3*n - 1)/((a + b*x^n)^(1/2)*(c + d*x^n)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{3 n - 1}}{\sqrt {a + b x^{n}} \sqrt {c + d x^{n}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(-1+3*n)/(a+b*x**n)**(1/2)/(c+d*x**n)**(1/2),x)

[Out]

Integral(x**(3*n - 1)/(sqrt(a + b*x**n)*sqrt(c + d*x**n)), x)

________________________________________________________________________________________